Teaching

Data Mining and Big Data Analytics

Data mining and big data analytics is a core subject in data science with the aim to develop methods to examine sizable and multivariate datasets. Their common purpose is to uncover hidden patterns, unknown correlations and other useful information useful to make better decisions. In this course we will introduce methods of data aqusition and concepts of data mining, machine learning and big data analytics. We will cover the key data mining methods of clustering, classification and pattern mining are illustrated, together with practical tools for their execution. We will also demonstrate the applications of these tools on real datasets, to show how they can help us to analyse the digital traces of human activities at societal scale, to understand and forecast many complex socio-economic phenomena. The course will have a hands-on approach, with homeworks, practical classes and with the development of a project. Students are free to work in any computer language/network software they feel most comfortable. However, during the class all examples and sample code will be provided in Python and Jupyter notebooks, thus the use of Python is strongly encouraged.

Course webpage

Debates and Contradictions in Social Data Science

This seminar course provides a broader view on different fields where Social Data Science methods are applicable. The goal is to explain the actual questions that can be answered with a data science approach and the open debates about their broad applicability in various fields. This course involves several guest lecturers from CEU departments and elsewhere, who will give lectures about their own disciplines. As a university wide course, it provides an introduction to any participating students independent of their background to the actual topics of Social Data Science and to data driven research in general. It helps the students to develop a critical and reflexive view about the potentials and dangers of the applications of this field. Meanwhile, this course serves as the first steppingstone for Social Data Science MS students towards their specialization in Applied Social Data Science, Economics, Environmental Science, Political Science and Policy.

Course webpage

Digital Data Collection Methods

In the age of the digital data revolution the collection of human behavioral datasets is a very important issue and requires thorough training for the appropriate design of collection methods. While researchers commonly assume that data is granted at the outset, without control on the data collection pipeline, one never can be sure about intrinsic biases, hidden correlations or unrepresentative sampling. All these can potentially induce misleading noise or undermine any observation/conclusion drawn from the date-driven observations. The aim of this course is to provide proper training on the methodological paths of digital data collection to understand how to translate a scientific hypothesis to data collection pipelines precisely measuring the question in hand with the least possible noise and environmental effects. During the course we will learn in depth about all the latest techniques to collect individual or collective human behavioral data using tracking, monitoring or crawling methods or transactional data technics. We will also learn how to design digital surveys, to collect online questionnaires or to set up controlled online social experiments. All these methods are in the frontline of computational social science and are pivotal for the coming generation of researchers and data scientists working on any related questions. The course will have a hands-on approach, with homework assignments, practical classes and the development of a project.

Course webpage

Diving in the Digital Public Space

This course is a collaboration with Pr. Jean-Philippe Cointet organized as a shared course by the Department of Network and Data Science - CEU Vienna and the Médialab - Sciences Po Paris as part of the CIVICA European University program. The course invites students to collect, model and visualize data from social media platforms. Data built from individual behaviors of users on Twitter, Facebook or Youtube are playing an increasing role in marketing, political targeting or even epidemic spreading forecasting. In this joint course between CEU and Sciences Po, we teach students the basics of data science applied to social media platforms and call for imagining alternative use of traditional AI powered data-analysis algorithms.

Course webpage

Algorithms and Data Structures

The aim of this course is to introduce mathematical modeling of computational problems, as well as common algorithms, algorithmic paradigms, and data structures used to solve these problems. It emphasizes the relationship between algorithms and programming and introduces basic performance measures and analysis techniques for these problems.

Course webpage

Introduction to Computer Science

This course aims to introduce the basic concepts in computer science to students, who join the Social Data Science program without sufficient background. The course introduces mathematical modeling of computational problems, as well as common algorithms, algorithmic paradigms, and data structures used to solve these problems. It emphasizes the relationship between algorithms and programming and introduces basic performance measures and analysis techniques for these problems. The course is organized as a sequence of short lectures and tutorials.

Course webpage